197 research outputs found

    Putative adult neurogenesis in old world parrots: the congo African grey parrot (Psittacus erithacus) and timneh grey parrot (Psittacus timneh)

    Get PDF
    In the current study, we examined for the first time, the potential for adult neurogenesis throughout the brain of the Congo African grey parrot (Psittacus erithacus) and Timneh grey parrot (Psittacus timneh) using immunohistochemistry for the endogenous markers proliferating cell nuclear antigen (PCNA), which labels proliferating cells, and doublecortin (DCX), which stains immature and migrating neurons. A similar distribution of PCNA and DCX immunoreactivity was found throughout the brain of the Congo African grey and Timneh grey parrots, but minor differences were also observed. In both species of parrots, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, subventricular zone of the lateral wall of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and the rhombencephalon. The olfactory bulb and telencephalic subdivisions exhibited a higher density of both PCNA and DCX immunoreactive cells than any other brain region. DCX immunoreactive staining was stronger in the telencephalon than in the subtelencephalic structures. There was evidence of proliferative hot spots in the dorsal and ventral poles of the lateral ventricle in the Congo African grey parrots at rostral levels, whereas only the dorsal accumulation of proliferating cells was observed in the Timneh grey parrot. In most pallial regions the density of PCNA and DCX stained cells increased from rostral to caudal levels with the densest staining in the nidopallium caudolaterale (NCL). The widespread distribution of PCNA and DCX in the brains of both parrot species suggest the importance of adult neurogenesis and neuronal plasticity during learning and adaptation to external environmental variations

    Deterioration of the Gαo Vomeronasal Pathway in Sexually Dimorphic Mammals

    Get PDF
    In mammals, social and sexual behaviours are largely mediated by the vomeronasal system (VNS). The accessory olfactory bulb (AOB) is the first synaptic locus of the VNS and ranges from very large in Caviomorph rodents, small in carnivores and ungulates, to its complete absence in apes, elephants, most bats and aquatic species. Two pathways have been described in the VNS of mammals. In mice, vomeronasal neurons expressing Gαi2 protein project to the rostral portion of the AOB and respond mostly to small volatile molecules, whereas neurons expressing Gαo project to the caudal AOB and respond mostly to large non-volatile molecules. However, the Gαo-expressing pathway is absent in several species (horses, dogs, musk shrews, goats and marmosets) but no hypotheses have been proposed to date to explain the loss of that pathway. We noted that the species that lost the Gαo pathway belong to Laurasiatheria and Primates lineages, both clades with ubiquitous sexual dimorphisms across species. To assess whether similar events of Gαo pathway loss could have occurred convergently in dimorphic species we studied G-protein expression in the AOB of two species that independently evolved sexually dimorphic traits: the California ground squirrel Spermophilus beecheyi (Rodentia; Sciurognathi) and the cape hyrax Procavia capensis (Afrotheria; Hyracoidea). We found that both species show uniform expression of Gαi2-protein throughout AOB glomeruli, while Gαo expression is restricted to main olfactory glomeruli only. Our results suggest that the degeneration of the Gαo-expressing vomeronasal pathway has occurred independently at least four times in Eutheria, possibly related to the emergence of sexual dimorphisms and the ability of detecting the gender of conspecifics at distance

    The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-mammalian Therapsida

    Get PDF
    Biarmosuchia, as the basalmost group of Therapsida (the stem group of mammals), are important for understanding mammalian origins and evolution. Unlike other therapsid groups, the bony labyrinth of biarmosuchians has not yet been studied, despite insightful clues that bony labyrinth morphology can provide to address palaeobiology and phylogeny of extinct animals. Here, using CT scanning, surface reconstruction and a 3D geometric-morphometric protocol of 60 semi-landmarks on the bony labyrinth of 30 therapsids (including three Mammaliaformes), it is demonstrated that bony labyrinth morphology of biarmosuchians is very distinctive compared to that of other therapsids. Despite the primitive nature of their cranial morphology, biarmosuchians display highly derived traits in the structure of the bony labyrinth. The most noticeable are the presence of a long and slender canal linking the vestibule to the fenestra vestibuli, an enlarged and dorsally expanded anterior canal, and the absence of a secondary common crus (except for one specimen), which sets them apart from other non-mammalian therapsids. These characters provide additional support for the monophyly of Biarmosuchia, the most recently recognized major therapsid subclade. Although implications of the derived morphology of the biarmosuchian bony labyrinth are discussed, definitive interpretations are dependent on the discovery of well-preserved postcranial material. It nevertheless sheds light on a previously overlooked diversity of bony labyrinth morphology in non-mammalian therapsids.The Palaeontological Scientific Trust (PAST) and its Scatterlings of Africa Programmes NRF South Africa DST-NRF Centre of Excellence in PalaeosciencesJN

    Sociality Affects REM Sleep Episode Duration Under Controlled Laboratory Conditions in the Rock Hyrax, Procavia capensis.

    Get PDF
    The rock hyrax, Procavia capensis, is a highly social, diurnal mammal. In the current study several physiologically measurable parameters of sleep, as well as the accompanying behavior, were recorded continuously from five rock hyraxes, for 72 h under solitary (experimental animal alone in the recording chamber), and social conditions (experimental animal with 1 or 2 additional, non-implanted animals in the recording chamber). The results revealed no significant differences between solitary and social conditions for total sleep times, number of episodes, episode duration or slow wave activity (SWA) for all states examined. The only significant difference observed between social and solitary conditions was the average duration of rapid eye movement (REM) sleep episodes. REM sleep episode duration was on average 20 s and 40 s longer under social conditions daily and during the dark period, respectively. It is hypothesized that the increase in REM sleep episode duration under social conditions could possibly be attributed to improved thermoregulation strategies, however considering the limited sample size and design of the current study further investigations are needed to confirm this finding. Whether the conclusions and the observations made in this study can be generalized to all naturally socially sleeping mammals remains an open question

    Changes in the cholinergic, catecholaminergic, orexinergic and serotonergic structures forming part of the sleep systems of adult mice exposed to intrauterine alcohol

    Get PDF
    We examined the effect of chronic prenatal alcohol exposure on certain neuronal systems involved with the sleep-wake cycle of C57BL/6J mice exposed to prenatal alcohol once they had reached 56 days post-natal. Pregnant mice were exposed to alcohol, through oral gavage, on gestational days 7–16, with recorded blood alcohol concentration (BAC)s averaging 1.84 mg/ml (chronic alcohol group, CA). Two control groups, an oral gavage sucrose control group (chronic alcohol control group, CAc) and a non-treated control group (NTc), were also examined. At 56 days post-natal, the pups from each group were sacrificed and the whole brain sectioned in a coronal plane and immunolabeled for cholineacetyltransferase (ChAT), tyrosine hydroxylase (TH), serotonin (5HT) and orexin-A (OxA) which labels cholinergic, catecholaminergic, serotonergic and orexinergic structures respectively. The overall nuclear organization and neuronal morphology were identical in all three groups studied, and resemble that previously reported for laboratory rodents. Quantification of the estimated numbers of ChAT immunopositive (+) neurons of the pons, the TH+ neurons of the pons and the OxA+ neurons of the hypothalamus showed no statistically significant difference between the three experimental groups. The stereologically estimated areas and volumes of OxA+ neurons in the CA group were statistically significantly larger than the groups not exposed to prenatal alcohol, but the ChAT+ neurons in the CA group were statistically significantly smaller. The density of orexinergic boutons in the anterior cingulate cortex was lower in the CA group than the other groups. No statistically significant difference was found in the area and volume of TH+ neurons between the three experimental groups. These differences are discussed in relation to the sleep disorders recorded in children with fetal alcohol spectrum disorder (FASD)

    Inactivity/sleep in two wild free-roaming African elephant matriarchs - Does large body size make elephants the shortest mammalian sleepers?

    Get PDF
    The current study provides details of sleep (or inactivity) in two wild, free-roaming African elephant matriarchs studied in their natural habitat with remote monitoring using an actiwatch subcutaneously implanted in the trunk, a standard elephant collar equipped with a GPS system and gyroscope, and a portable weather station. We found that these two elephants were polyphasic sleepers, had an average daily total sleep time of 2 h, mostly between 02:00 and 06:00, and displayed the shortest daily sleep time of any mammal recorded to date. Moreover, these two elephants exhibited both standing and recumbent sleep, but only exhibited recumbent sleep every third or fourth day, potentially limiting their ability to enter REM sleep on a daily basis. In addition, we observed on five occasions that the elephants went without sleep for up to 46 h and traversed around 30 km in 10 h, possibly due to disturbances such as potential predation or poaching events, or a bull elephant in musth. They exhibited no form of sleep rebound following a night without sleep. Environmental conditions, especially ambient air temperature and relative humidity, analysed as wet-bulb globe temperature, reliably predict sleep onset and offset times. The elephants selected novel sleep sites each night and the amount of activity between sleep periods did not affect the amount of sleep. A number of similarities and differences to studies of elephant sleep in captivity are noted, and specific factors shaping sleep architecture in elephants, on various temporal scales, are discussed

    Putative adult neurogenesis in two domestic pigeon breeds (Columba livia domestica): Racing homer versus utility carneau pigeons

    Get PDF
    Generation of neurons in the brains of adult birds has been studied extensively in the telencephalon of song birds and few studies are reported on the distribution of PCNA and DCX in the telencephalon of adult non-song learning birds. We report here on adult neurogenesis throughout the brains of two breeds of adult domestic pigeons (Columba livia domestica), the racing homer and utility carneau using endogenous immunohistochemical markers proliferating cell nuclear antigen (PCNA) for proliferating cells and doublecortin (DCX) for immature and migrating neurons. The distribution of PCNA and DCX immunoreactivity was very similar in both pigeon breeds with only a few minor differences. In both pigeons, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, walls of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and cerebellum. Generally, the olfactory bulbs and telencephalon had more PCNA and DCX cells than other regions. Two proliferative hotspots were evident in the dorsal and ventral poles of the lateral ventricles. PCNA- and DCX-immunoreactive cells migrated radially from the walls of the lateral ventricle into the parenchyma. In most telencephalic regions, the density of PCNA- and DCX-immunoreactive cells increased from rostral to caudal, except in the mesopallium where the density decreased from rostral to middle levels and then increased caudally. DCX immunoreactivity was more intense in fibres than in cell bodies and DCX-immunoreactive cells included small granular cells, fusiform bipolar cells, large round and or polygonal multipolar cells. The similarity in the distribution of proliferating cells and new neurons in the telencephalon of the two breeds of pigeons may suggest that adult neurogenesis is a conserved trait as an ecological adaptation irrespective of body size

    Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    Get PDF
    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates

    Male blue wildebeest increase activity during the rut, but not at the expense of rest

    Get PDF
    Rest is a state of adaptive inactivity that increases the efficiency of activity by regulating its timing and reducing energy use when activity is not beneficial. Thus, animals can go without rest when specific demands, such as mating, favour being awake. Sexually active male blue wildebeest (bulls) are typically territorial, and it has been reported that when a bull is protecting a harem during the mating season (rut), he neither eats nor rests. We examined the daily activity and inactivity patterns of dominant bulls by means of actigraphy for 3 months, which included the rut. We also measured faecal androgen metabolite (fAM) levels and subcutaneous temperature, both of which have variances known to delineate the rut. During the rut, wildebeest bulls experienced higher levels of activity, fAM, and a greater daily range of subcutaneous temperature. Despite previous reports, the male blue wildebeest rested daily during the rut, and while the amount of rest was low, it was not substantially lower than prior to the rut. The amount of time spent inactive increased substantially after the rut. The timing of daily activity and inactivity patterns did not vary substantially across the recording period. Across the recording period, the average daily ambient temperatures decreased (seasonality), and the subcutaneous temperature followed this pattern, although it was not as marked. It appears that in the post-rut period a substantive increase in time spent at rest occurs, potentially allowing the wildebeest bulls time to recover following a period of intense activity.Grant Sponsors: South African National Research Foundation. Open access funding provided by University of the Witwatersrand.Open access funding provided by University of the Witwatersrand.https://link.springer.com/journal/360hj2023Anatomy and PhysiologyMammal Research InstituteZoology and Entomolog
    • …
    corecore